إنَّ جَمعَ المتَّجِهاتِ هُوَ أَداةٌ رياضيّة مهمَّة في مَسائِلِ الحركَةِ والقُوى في الفيزياء. إنَّ جَمعَ المتَّجهاتِ ليسَ جَمعًا "عاديًّا"، بل إنّما لا يأخُذُ بالحسبان الطُّولَ فَحسبُ، وإنّما الاتّجاه أيضًا، ولذلك فهوَ يُربِكُ العَديدِ مِنَ التَّلاميذ. سنتَعلَّمُ مِن خلالِ التَّطبيقِ الّذي أمامنا، كيفَ نجمَعُ المتَّجِهات. لمشاهدةِ التَّطبيقِ، اضغطوا على الصُّورة وافتحوا الملفّ المرتبط. (تطبيق جافا).
أُنتجَ هذا التّطبيق الصّغير في إطار مشروع PhET في جامعة كولورادو
لتنزيل هذا التّطبيق وتشغيله في الحاسوب اضغطوا هنا
إن لم تنجحوا في تحميل التّطبيق، اقتنُوا برنامج Javaweb. اضغطوا هنا واعملوا بحسب التّعليمات.
مِن خلال هذا التّطبيق، سَنَتَدَرَّبُ على جَمعِ المتَّجهات. المتَّجِهُ هو مقدارٌ له طولٌ واتّجاه. (مثلاً: قوّة فيزيائيّة أو مسار حركة). كي نجمَعَ عدَّةَ متّجهاتٍ، علينا إيجادُ متّجِهِ المحصّلة، أي متّجهِ مُحصّلة اتّجاهِ جميعِ المتّجهاتِ ومقدارها. لكي نقُومَ بذلك، علينا تجزئةُ كلّ متّجه إلى مركّب x ومركّب y (مركّبٍ أفقيّ ومركّبٍ عموديّ) وجمعها بشكلٍ مُنفَصِل. بعد ذلك، علينا حِسابُ متّجهِ المحصّلة مَعَ الأَخذِ بالحسبانِ الزّاويةَ الّتي يمكِنُ الاستدلالُ عليها مِنَ المثلَّثِ القائم الزّاوية الّذي يَنتُجُ بينَ المقدارِ الأُفُقيّ والعَموديّ.
بواسِطَةِ التّطبيق، تستطيعُونَ بناءَ متّجهاتٍ (على شكلِ أَسهُمٍ، وسيحسبُ التَّطبيقُ نفسُهُ متَّجهَ محصّلتها). لِفَهمِ طريقةِ الحساب بصورةٍ أفضل، مِنَ المفضَّلِ تعيينُ إمكانيّة الشّبكة ونوعها 1، 2 أو 3 بحسب ما يناسِبُكُم. النّوع 1 يعرِضُ مركّبي المتّجه مَعَ اتّجاههما الأَصلِيَّيْنِ، والنَّوع 2 يعرِضُ مركّبي المتّجه بحيثُ يكوِّنانِ مثلَّثًا قائِمَ الزّاوية، والمتّجه نفسُهُ هُوَ الوَتَر (وهكذا يمكن حِسابُ الزّاوية)، بينما يعرضُ النّوع 3 إِسقاطاتِ المركبّاتِ على المحاور.
تذكَّرُوا! متّجه في اتّجاهٍ مُعاكِسٍ للمِحوَرِ، يحصُلُ على قيمةٍ سالبةٍ. وبذلك، فإنَّ متَّجِهَيْنِ مُتساوِيَيْنِ في مقدارهما، ومتعاكِسَيْنِ في اتّجاهِهِما، يلغي أَحَدُهُما الآخَر.
ماذا يحدُثُ، حسب رأيكم، إذا قُمتُم ببناءِ شكلٍ مغلق مِن متّجهات؟ لماذا حسب رأيكم؟